viernes, 28 de mayo de 2010

TRANSFORMADORES DE CORRIENTE




TRANSFORMADORES DE CORRIENTE.

En esta sección se presentan los parámetros mas importantes en la definición de los Transformadores de Corriente, así como las diferentes funciones que desempeñan y sus opciones.

DEFINICIONES IMPORTANTES RELACIONADAS CON LOS TRANSFORMADORES DE CORRIENTE

a) Relación (Ratio). Es la relación de la corriente nominal de servicio del transformador y su corriente nominal en el secundario, el estándar más usado es de 5 Amps. en el secundario.

b) Precisión (Accuracy). Es la relación en porciento, de la corrección que se haría para obtener una lectura verdadera. El ANSI C57.13-1968 designa la precisión para protecciones con dos letras C y T. "C" significa que el porciento de error puede ser calculado, y esto se debe a que los devanados están uniformemente distribuidos, reduciendo el error producido por la dispersión del flujo en el núcleo.

"T" significa que debe ser determinado por medio de pruebas, ya que los devanados no están distribuidos uniformemente en el núcleo produciendo errores apreciables.

El número de clasificación indica el voltaje que se tendría en las terminales del secundario del TC para un burden definido, cuando la corriente del secundario sea 20 veces la corriente nominal, sin exceder 10% el error de relación.

c) Burden o Potencia Nominal de un Transformador de Corriente. Es la capacidad de carga que se puede conectar a un transformador, expresada en VA o en Ohms a un factor de potencia dado. El término "Burden" se utiliza para diferenciarlo de la carga de potencia del sistema eléctrico. El factor de potencia referenciado es el del burden y no el de la carga.

d) Polaridad. Las marcas de polaridad designan la dirección relativa instantánea de la corriente. En el mismo instante de tiempo que la corriente entra a la terminal de alta tensión con la marca, la corriente secundaria correspondiente esta saliendo por la terminal marcada.

e) Capacidad de Corriente Continua. Es la capacidad de corriente que el TC puede manejar constantemente sin producir sobrecalentamiento y errores apreciables. Si la corriente del secundario de un transformador de corriente esta entre 3 y 4 Amps., cuando la corriente del primario esta a plena carga, se dice que el transformador esta bien seleccionado. No se recomienda sobre dimensionar los TC's porque el error es mayor para cargas bajas.

f) Capacidad de Corriente Térmica de Corto Tiempo. Esta es la máxima capacidad de corriente simétrica RMS que el transformador puede soportar por 1 seg., con el secundario en corto, sin sobrepasar la temperatura especificada en sus devanados. En la práctica esta se calcula como:

I Térmica (KA) = Potencia de Corto Circuito (MVA)/ (1.73* Tensión (KV)).

Como la potencia de precisión varía sensiblemente con el cuadrado del número de Ampere-Vueltas del primario, para un circuito magnético dado, la precisión de los TC's hechos para resistir grandes valores de corrientes de corto circuito, disminuye considerablemente

g) Capacidad Mecánica de Tiempo Corto. Esta es la máxima corriente RMS asimétrica en el primario que el TC puede soportar sin sufrir daños, con el secundario en corto. Esta capacidad solo se requiere definir en los TC tipo devanado. En la práctica esta corriente se calcula como:

I Dinámica (KA) = 2.54 * I Térmica

BASES GENERALES PARA EL DISEÑO Y SELECCIÓN DE TRANSFORMADORES DE CORRIENTE

La función de un transformadores de corriente es la reducir a valores normales y no peligrosos, las características de corriente en un sistema eléctrico, con el fin de permitir el empleo de aparatos de medición normalizados, por consiguiente más económicos y que pueden manipularse sin peligro.

Un transformador de corriente es un transformador de medición, donde la corriente secundaria es, dentro de las condiciones normales de operación, prácticamente proporcional a la corriente primaria, y desfasada de ella un ángulo cercano a cero, para un sentido apropiado de conexiones.

El primario de dicho transformador está conectado en serie con el circuito que se desea controlar, en tanto que el secundario está conectado a los circuitos de corriente de uno o varios aparatos de medición, relevadores o aparatos análogos, conectados en serie.

Un transformador de corriente puede tener uno o varios devanados secundarios embobinados sobre uno o varios circuitos magnéticos separados.

Los factores que determinan la selección de los transformadores de corriente son:

- El tipo de Transformador de Corriente.

- El tipo de instalación.

- El tipo de aislamiento.

- La potencia nominal.

- La clase de precisión.

- El tipo de conexión.

- La Corriente Nominal Primaria.

- La Corriente Nominal Secundaria.






transformador


EL TRANSFORMADOR

La invención del transformador, data del año de 1884 para ser aplicado en los sistemas de transmisión que en esa época eran de corriente directa y presentaban limitaciones técnicas y económicas. El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaba transformadores, se puso en operación en los Estados Unidos de América. En el año de 1886 en Great Barington, Mass., en ese mismo año, al protección eléctrica se transmitió a 2000 volts en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeñas aplicaciones iniciales, la industria eléctrica en el mundo, ha recorrido en tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador.



El transformador, es un dispositivo que no tiene partes móviles, el cual transfiere la energía eléctrica de un circuito u otro bajo el principio de inducción electromagnética. La transferencia de energía la hace por lo general con cambios en los valores de voltajes y corrientes.





transformador de potencia


TRANSFORMADOR DE POTENCIA

jueves, 27 de mayo de 2010

El primer transformador fue construido por M. Faraday(1831) cuando realizó los experimentos en los quedescubrió la inducción electromagnética. El aparatoque usó consistió en dos bobinas enrolladas una encimade la otra. Faraday no puso mayor atención en esteaparato, ya que estaba interesado en otras cosas.Fue hasta 1878, cuando el científico ruso P. N.Yablochkov construyó la primera planta comercial parala alimentación de un nuevo tipo de lámparaseléctricas inventadas por él conocidas como bujíasYablochkov. Para esta nueva central de energía,Yablochkov creó en cooperación con los talleres GrammeEngineering Works de Francia un generador síncrono ypara mejorar el trabajo de la instalación, fabricó untransformador que tenía un circuito magnético abierto.Aunque fue impugnada la originalidad de este invento,las patentes concedidas a Yablochkov en 1876 y 1877aunadas a la evidencia del relato sobre la iluminaciónen la Exposición mundial de París y el informepublicado por la Compañía Francesa de IluminaciónEléctrica, no deja lugar a dudas de que Yablochkov fueel primero que lo utilizó en una planta industrialcomercial.Lucien H. Gaulard, inventor francés y John D. Gibbs,ingeniero inglés, obtuvieron en 1882 una patente paraun dispositivo que llamaron generador secundario. Elsistema que ellos patentaron fue una versión pocopráctica de lo que actualmente llamamos untransformador. Demostraron su sistema en Inglaterra en1883 y en Italia en 1884.Entre los visitantes a sus exposiciones estuvierontres húngaros : Otto T. Bláthy, Max Déri y KarlZipernowski. Ellos mejoraron el diseño deltransformador y en 1885 presentaron en la exposiciónNacional Húngara (en Budapest), lo que resultó serprototipo del sistema de iluminación que se utiliza enla actualidad. Sus sistema tenía 75 transformadoresconectados en paralelo que alimentaban 1067 lámparasincandescentes del tipo Edison. El sistema eraalimentado por un generador de ca de 1350 volts. Laconstrucción de los transformadores era laboriosa ycara. Otto T. Bláthy fue el primero en usar la palabratransformador.George Westinghouse (industrial norteamericano)presenció la demostración de Gaulard y Gibbs en Italiay conocía el sistema construido por Edison en NuevaYork, del cual no era simpatizante, ya que estabaconsciente de sus desventajas . En 1884 Westinghousecontrató a William Stanley (joven ingeniero eléctrico). En 1885Stanley ya había diseñado varios tipos detransformadores superiores a los de los húngaros.Stanley construyó con la ayuda de otros científicos,transformadores con laminillas de hierro, las cualesdisminuían las pérdidas de energía. En 1886 entró enoperación una planta construida bajo la dirección deStanley en el pueblo de Great Barrington ,Massachussetts. Esta planta operó con ca, con ungenerador de 500 volts y alimentó un conjunto delámparas a una distancia de 2 km. Utilizandotransformadores redujeron el voltaje a 100 V, que esel valor que se requiere para hacer funcionar laslámparas. De esta manera Westinghouse inició lamanufactura y venta de equipos para distribuirelectricidad de ca.En 1891 en ingeniero Braun (director de los talleresOerlikon de Suiza) construyó el primer transformadorde 30 kV sumergido en aceite.


Transformador.


Se denomina transformador a una máquina eléctrica que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna, manteniendo la frecuencia. La potencia que ingresa al equipo, en el caso de un transformador ideal, esto es, sin pérdidas, es igual a la que se obtiene a la salida. Las máquinas reales presentan un pequeño porcentaje de pérdidas, dependiendo de su diseño, tamaño, etc.


Los transformadores son dispositivos basados en el fenómeno de la inducción electromagnética y están constituidos, en su forma más simple, por dos bobinas devanadas sobre un núcleo cerrado de hierro dulce o hierro silicio. Las bobinas o devanados se denominan primario y secundario según correspondan a la entrada o salida del sistema en cuestión, respectivamente. También existen transformadores con más devanados; en este caso, puede existir un devanado "terciario", de menor tensión que el secundario.



Funcionamiento

Representación esquemática del transformador.
Si se aplica una fuerza electromotriz alterna en el devanado primario, las variaciones de intensidad y sentido de la corriente alterna crearán un campo magnético variable dependiendo de la frecuencia de la corriente. Este campo magnético variable originará, por inducción electromagnética, la aparición de una fuerza electromotriz en los extremos del devanado secundario.
La relación entre la fuerza electromotriz inductora (Ep), la aplicada al devanado primario y la fuerza electromotriz inducida (Es), la obtenida en el secundario, es directamente proporcional al número de espiras de los devanados primario (Np) y secundario (Ns) .

La razón de la transformación (m) del voltaje entre el bobinado primario y el bobinado secundario depende de los números de vueltas que tenga cada uno. Si el número de vueltas del secundario es el triple del primario, en el secundario habrá el triple de tensión.



TRANSFORMADORES ELECTRICOS
Como su nombre lo dice sirven para transformar la energía que viaja por líneas de alta, media y baja tensión, por las subestaciones distribuyéndola por las ciudades. Existen diversos tipos de trasformadores, varían según su potencia, capacidad, el uso o aplicación; a continuación se presentan algunos:

  • TRANSFORMADOR DE POTENCIA
    Se utilizan para substransmisión y transmisión de energía eléctrica en alta y media tensión. Son de aplicación en subestaciones transformadoras, centrales de generación y en grandes usuarios.


Características Generales:Se construyen en potencias normalizadas desde 1.25 hasta 20 MVA, en tensiones de 13.2, 33, 66 y 132 kV y frecuencias de 50 y 60 Hz.

  • TRANSFORMADOR DE DISTRIBUCION
    Se denomina transformadores de distribución, generalmente los transformadores de potencias iguales o inferiores a 500 kVA y de tensiones iguales o inferiores a 67 000 V, tanto monofásicos como trifásicos. Aunque la mayoría de tales unidades están proyectadas para montaje sobre postes, algunos de los tamaños de potencia superiores, por encima de las clases de 18 kV, se construyen para montaje en estaciones o en plataformas. Las aplicaciones típicas son para alimentar a granjas, residencias, edificios o almacenes públicos, talleres y centros comerciales.


A continuación se detallan algunos tipos de transformadores de distribución.
Descripción:Se utilizan en intemperie o interior para distribución de energía eléctrica en media tensión. Son de aplicación en zonas urbanas, industrias, minería, explotaciones petroleras, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.


Características Generales:Se fabrican en potencias normalizadas desde 25 hasta 1000 kVA y tensiones primarias de 13.2, 15, 25, 33 y 35 kV. Se construyen en otras tensiones primarias según especificaciones particulares del cliente. Se proveen en frecuencias de 50-60 Hz. La variación de tensión, se realiza mediante un conmutador exterior de accionamiento sin carga.


TRANSFORMADORES SECOS ENCAPSULADOS EN RESINA EPOXI
Descripción:
Se utilizan en interior para distribución de energía eléctrica en media tensión, en lugares donde los espacios reducidos y los requerimientos de seguridad en caso de incendio imposibilitan la utilización de transformadores refrigerados en aceite.
Son de aplicación en grandes edificios, hospitales, industrias, minería, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.


Características Generales:Su principal característica es que son refrigerados en aire con aislación clase F, utilizándose resina epoxi como medio de protección de los arrollamientos, siendo innecesario cualquier mantenimiento posterior a la instalación. Se fabrican en potencias normalizadas desde 100 hasta 2500 kVA, tensiones primarias de 13.2, 15, 25, 33 y 35 kV y frecuencias de 50 y 60 Hz.

  • TRANSFORMADORES HERMÉTICOS DE LLENADO INTEGRAL
    Descripción:
    Se utilizan en intemperie o interior para distribución de energía eléctrica en media tensión, siendo muy útiles en lugares donde los espacios son reducidos.
    Son de aplicación en zonas urbanas, industrias, minería, explotaciones petroleras, grandes centros comerciales y toda actividad que requiera la utilización intensiva de energía eléctrica.


Características Generales:Su principal característica es que al no llevar tanque de expansión de aceite no necesita mantenimiento, siendo esta construcción más compacta que la tradicional. Se fabrican en potencias normalizadas desde 100 hasta 1000 kVA, tensiones primarias de 13.2, 15, 25, 33 y 35 kV y frecuencias de 50 y 60 Hz.

  • TRANSFORMADORES RURALES
    Descripción:Están diseñados para instalación monoposte en redes de electrificación suburbanas monofilares, bifilares y trifilares, de 7.6, 13.2 y 15 kV.
    En redes trifilares se pueden utilizar transformadores trifásicos o como alternativa 3 monofásicos.

  • TRANSFORMADORES SUBTERRÁNEOS
    Aplicaciones
    Transformador de construcción adecuada para ser instalado en cámaras, en cualquier nivel, pudiendo ser utilizado donde haya posibilidad de inmersión de cualquier naturaleza.


Características
Potencia: 150 a 2000KVA
Alta Tensión: 15 o 24,2KV
Baja Tensión: 216,5/125; 220/127;380/220;400/231V
TRANSFORMADORES AUTO PROTEGIDOS
Aplicaciones
El transformador incorpora componentes para protección del sistema de distribución contra sobrecargas, corto-circuitos en la red secundaria y fallas internas en el transformador, para esto posee fusibles de alta tensión y disyuntor de baja tensión, montados internamente en el tanque, fusibles de alta tensión y disyuntor de baja tensión. Para protección contra sobre tensiones el transformador está provisto de dispositivo para fijación de pararrayos externos en el tanque.
Características
Potencia: 45 a 150KVA
Alta Tensión: 15 o 24,2KV
Baja Tensión: 380/220 o 220/127v


AUTOTRANSFORMADORES
Los autotransformadores se usan normalmente para conectar dos sistemas de transmisión de tensiones diferentes, frecuentemente con un devanado terciario en triángulo. De manera parecida, los autotransformadores son adecuados como transformadores elevadores de centrales cuando sé desea alimentar dos sistemas de transporte diferentes.
En este caso el devanado terciario en triángulo es un devanado de plena capacidad conectado al generador y los dos sistemas de transporte se conectan al devanado, autotransformador. El autotransformador no sólo presenta menores pérdidas que el transformador normal, sino que su menor tamaño y peso permiten el transporte de potencias superiores.


SUBESTACIONES
Subestaciones son los puntos de paso de la energía entre tramo y tramo para alimentar la línea de contacto; realizan la unión entre la red de alta tensión y la catenaria (curva formada por una cadena).

Instalación industrial empleada para la transformación del voltaje de la corriente eléctrica. Las subestaciones eléctricas se ubican en las inmediaciones de las centrales eléctricas para elevar el voltaje a la salida de sus generadores y en las cercanías de las poblaciones y los consumidores, para bajarlo de nuevo.
La razón técnica para realizar esta operación es la conveniencia de realizar el transporte de energía eléctrica a larga distancia a voltajes elevados para reducir las pérdidas resistivas, que dependen de la intensidad de corriente.


SUBESTACION EN CORRIENTE CONTINUA
Se utilizan grupos convertidores que transforman la corriente trifásica de alta tensión, de la red pública (corriente alterna trifásica de 50 Hz), en corriente continua a tensión más baja (3000 v, 1500 v, etc.). Estos grupos convertidores pueden ser rectificadores de vapor de mercurio o de semiconductores.
Subestaciones de corriente continua:
La distancia entre subestaciones es de 10 Km. en el caso de corriente continua de 1500 v y de 20 Km. en el caso de corriente continua de 3000 v.
El esquema general de la disposición de las subestaciones en el caso de corriente continua es el siguiente.
La distancia entre subestaciones es de 10 Km. en el caso de corriente continua de 1500 v y de 20 Km. en el caso de corriente continua de 3000 v. El esquema general de la disposición de las subestaciones en el caso de corriente continua es el siguiente.

EN CORRIENTE ALTERNA
Se distinguen dos casos
:
1- Con electrificación de corriente monofásica 16 2/3 Hz:
a) Con alimentación proporcionada por red especial a 16 2/3 Hz se utilizan transformadores que bajan la tensión a 15000 v. b) Con alimentación directamente de la red de alta tensión pública se utilizan convertidores de corriente trifásica a 50 Hz a corriente monofásica de 16 2/3 Hz a 15000 v.
2- Con electrificación de corriente monofásica de 50 Hz: Se tiene como red primaria la red pública trifásica; se utilizan transformadores monofásicos conectados entre dos fases de la red trifásica.
SUBESTACIONES DE CORRIENTE MONOFÁSICA A 15000 V Y 16 2/3 HZ
A.1) De producción autónoma, con alimentación por medio de centrales monofásicas.
A.2) De conversión centralizada, con alimentación desde puestos de conversión.
A.3) De conversión repartida que carece de línea de alta tensión para las estaciones y cada subestación está unida directamente a la red pública trifásica de 50 Hz mediante el puesto de transformación más cercano a ella.
Con ello se consigue reducir de manera considerable la longitud de la línea electrificada, y con ello una disminución del coste de la electrificación. Este método de distribución de subestaciones se lleva a cabo en países muy industrializados tales como Suecia.
B) SUBESTACIONES DE CORRIENTE MONOFÁSICA A 25000 V Y 50 HZ
Las subestaciones se disponen lo más cerca posible de los centros distribuidores de alta tensión y así conseguir que las líneas de alimentación sean lo más cortas posibles. La disposición es la siguiente:
Subestación (a) con alimentación doble, unida a dos puestos de alimentación mediante una línea trifásica a cada uno.
- Subestación (b) alimentada desde un solo puesto mediante una línea doble de dos conductores cada una.
- Subestación (c) alimentada mediante una línea doble y otra trifásica de emergencia.